# Characterizing zero-vehicle households: A double-hurdle problem perspective

## Divyakant Tahlyan<sup>†</sup> and Hani Mahmassani<sup>†</sup>

<sup>†</sup>Transportation Center, Northwestern University



## Introduction

- About 8.6 % households in the United States do not have a vehicle.
- While many households refrain from owning a vehicle due to **financial constraints** (and will likely buy a vehicle as income increases or vehicle cost decreases), there are many who do so due to **secondary reasons** like inability to drive or significant attitudinal preference for other modes.
- From household vehicle ownership modeling and forecasting perspective, three most popular frameworks include: un-ordered discrete choice models, ordered discrete choice models, and count data models.
- However, there is **limited attention** given to **zero-vehicle households** in the these frameworks, potentially leading to poor forecasting performance.
- We propose a **double-hurdle perspective** to vehicle-ownership modeling to account for **dual latent states** of no vehicle ownership. [1]
- We compare a **zero-inflated ordered probit** model [2] with a ordered probit model (without zero-inflation) for vehicle ownership modeling.
- Comparison is done using estimated parameters, **Vuong's closness test**, Akaike and Bayesian information criteria.
- The estimated model includes both socio-demographic and "soft" variables following **factor analysis**.

#### Zero-Inflated Ordered Probit Model

Let y be a random variable observed in terms of vehicles owned and takes discrete outcome 0 to J.

| Variable                 | Description                                                                                    |
|--------------------------|------------------------------------------------------------------------------------------------|
| y                        | Vehicles owned by a household                                                                  |
| r                        | Binary variable, $r = 0$ for non-participants; $r = 1$ for participants                        |
| $r^*$                    | Latent variable representing propensity of participation in vehicle ownership decision process |
| x                        | Vector of exogenous variables                                                                  |
| $\varepsilon$            | Standard normally distributed random variable                                                  |
| $\Phi(\cdot)$            | Cumulative distribution function of standard normal distribution                               |
| $\widetilde{y}^*$        | Latent propensity function for ordered probit model                                            |
| $\widetilde{y}$          | Discrete random variable generated by ordered probit model                                     |
| $\psi_j$                 | Estimable thresholds                                                                           |
| $\mathcal{L}\mathcal{L}$ | Log-likelihood function                                                                        |
|                          | Tab. 1: Variable definitions                                                                   |

Propensity of participation in the vehicle ownership decision process:

$$r^* = x'\beta + \varepsilon$$

Probability of participation in the vehicle ownership decision process:

$$Pr(r = 1|x) = Pr(r^* > 0|x) = \Phi(x'\beta)$$

Propensity function of the ordered probit model:

$$\widetilde{y}^{*} = z'\gamma + u$$

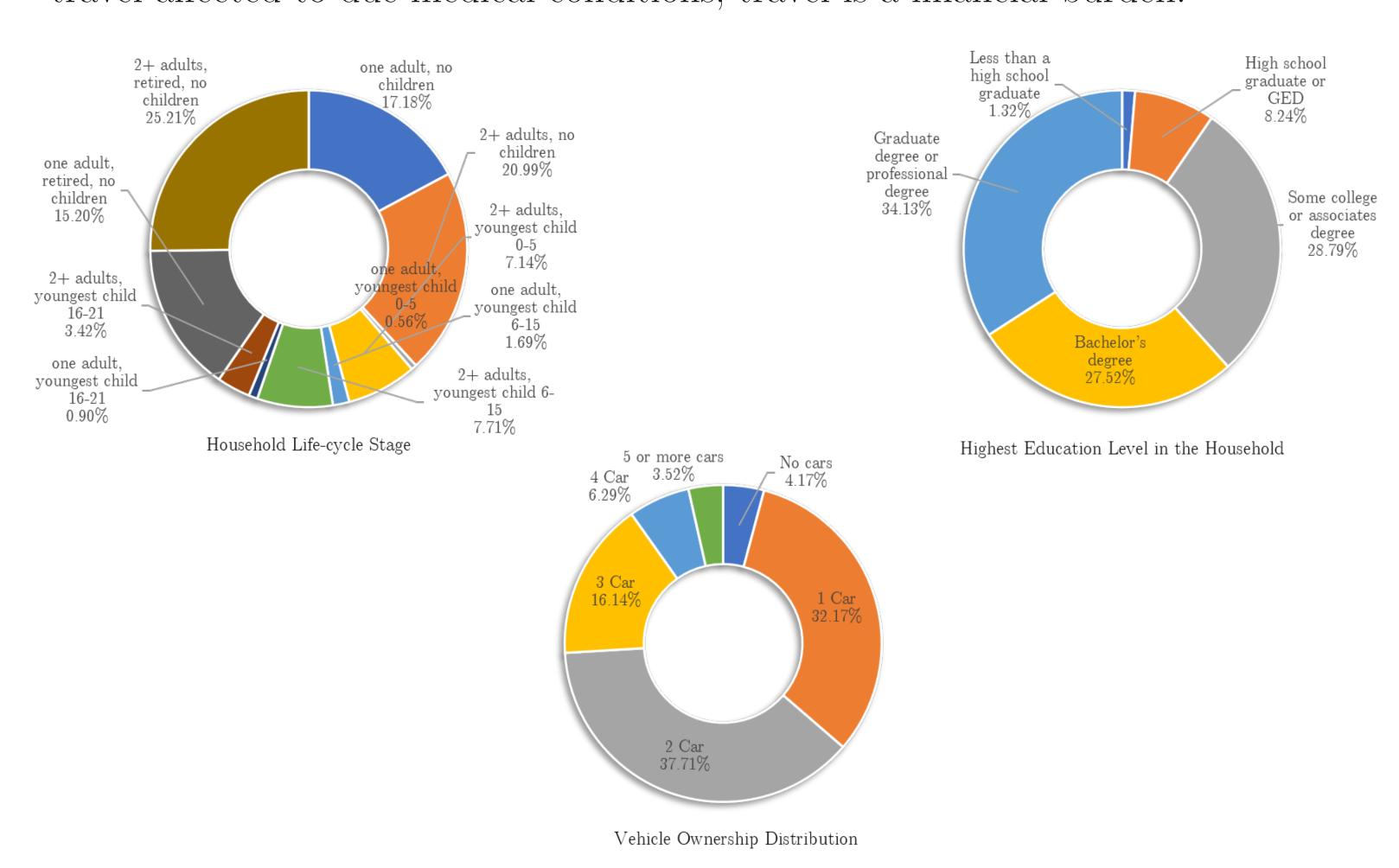
Relationship between latent propensity function  $\widetilde{y}^*$  and  $\widetilde{y}$ :

$$\widetilde{y} = \begin{cases} 0 & \text{if} \quad \widetilde{y}^* \le 0 \\ j & \text{if} \quad \psi_{j-1} < \widetilde{y}^* \le \psi_j \quad \forall j \in (1, ..., J-1) \\ J & \text{if} \quad \psi_{J-1} \le \widetilde{y}^* \end{cases}$$

Ordered probit probabilities:

$$Pr(\widetilde{y}) = \begin{cases} Pr(\widetilde{y} = 0 | z, r = 1) = \Phi(-z'\gamma) \\ Pr(\widetilde{y} = j | z, r = 1) = \Phi(\psi_j - z'\gamma) - \Phi(\psi_{j-1} - z'\gamma) & \forall j \in (1, ..., J - 1) \\ Pr(\widetilde{y} = J | z, r = 1) = 1 - \Phi(\psi_{J-1} - z'\gamma) \end{cases}$$

Full probabilities for y:


$$Pr(y) = \begin{cases} Pr(y = 0|z, x) = [1 - \Phi(x'\beta)] + \Phi(x'\beta)\Phi(-z'\gamma) \\ Pr(y = j|z, x) = \Phi(x'\beta)[\Phi(\psi_j - z'\gamma) - \Phi(\psi_{j-1} - z'\gamma)] & \forall j \in (1, ..., J-1) \\ Pr(y = J|z, x) = \Phi(x'\beta)[1 - \Phi(\psi_{J-1} - z'\gamma)] \end{cases}$$

Log-likelihood function:

$$\mathcal{LL}(\theta) = \sum_{i=1}^{N} \sum_{j=0}^{J} h_{ij} \ln[Pr(y_i = j | x_i, z_i, \theta)]$$

#### Data and Factor Analysis

- 2017 National Household Travel Survey's (NHTS) **California add-on data** with information from 26,112 households.
- Available information included: vehicle ownership information; socio-demographics like household size, residential location, and life-cycle stage; travel behavior of all household members; attitudinal and life situation related information.
- Using attitudinal and life situation variables, two **latent factors** were identified: travel affected to due medical conditions; travel is a financial burden.



| Identified factor                | Original Variables                                               | Factor loading |
|----------------------------------|------------------------------------------------------------------|----------------|
|                                  | Medical condition resulting a reduced day-to-day travel          | 0.863          |
| Medical condition affects travel | Medical condition resulting in asking others for rides           | 0.679          |
| 25.2%*                           | Medical condition resulting in giving up driving                 | 0.522          |
|                                  | Medical condition that makes it difficult to travel outside home | 0.852          |
|                                  | Walk to reduce financial burden                                  | 0.853          |
| Travel is a financial burden     | Bike to reduce financial burden                                  | 0.779          |
| 23.8%                            | Public transportation use to reduce final burden                 | 0.701          |
| 20.070                           | Price of gasoline affects travel                                 | 0.415          |
|                                  | Travel is a financial burden                                     | 0.370          |

Fig. 1: Descriptive Statistics

# Results

Comparison of Model fit measures:

- Since the two model structures are not nested, AIC, BIC and Vuong's closeness test used for comparison.
- $AIC = 2(k \mathcal{LL})$  and  $BIC = kln(n) 2\mathcal{LL}$ , where k is number of estimated parameters and n is number of observations.
- Test statistic in Vuong's closeness test written as:

$$\nu = \frac{\sqrt{N} (\frac{1}{N} \sum_{i=1}^{N} m_i)}{\sqrt{\frac{1}{N} \sum_{i=1}^{N} (m_i - \overline{m})^2}}$$

where  $m_i = log(\frac{f_1(y_i|x_i,z_i)}{f_2(y_i|x_i,z_i)})$ ,  $f_h(y_i|x_i,z_i)$  is predicted probability using model h (=1 for OP and 2 for ZIOP) that  $y_i$  equals y,  $\overline{m}$  is average value of  $m_i$  over all N.  $\nu < -1.96$  favors model 2 (ZIOP).

- AIC and BIC values for the ordered probit model equal 51202.8 and 51397.2, respectively. For the zero-inflated ordered probit, AIC and BIC values equal 51141.2 and 51392.2, respectively. This suggests that the zero-inflated ordered probit model is the preferred model over the simple ordered probit model.
- The Vuong's test static equals -2.815, which is greater than the threshold -1.96 value favoring the zero-inflated model.

## Results

- Interpretation of estimated parameters
- Statistically significant parameters in the ordered model fall in the following categories:
- -Household socio-demographics including number of drivers and workers in the household, household income etc.
- -Life-cycle stage variables
- -Household's residential location characteristics
- -Factor variable that travel is affected due to medical issues.
- Variables in zero-inflation probit model includes income and both factor variables.

| ~~                                                                                    | Ordered Probit     | Ordered Probit Model |            | Probit Model |  |
|---------------------------------------------------------------------------------------|--------------------|----------------------|------------|--------------|--|
| Variable                                                                              | Parameter Estimate |                      |            | t-statistic  |  |
| Ordered probit probability                                                            | I                  |                      |            |              |  |
| Constant                                                                              | 0.702              | 17.050               | 0.772      | 17.030       |  |
| $Household\ socio\text{-}demographics\ variables$                                     |                    |                      | ll_        |              |  |
| Number of drivers in the household                                                    | 1.062              | 68.010               | 1.067      | 75.290       |  |
| Number of workers in the household                                                    | 0.120              | 11.550               | 0.120      | 11.440       |  |
| Household income between \$25,000 & \$49,999 indicator                                | 0.271              | 10.830               | 0.248      | 9.850        |  |
| Household income between \$50,000 & \$99,999 indicator                                | 0.466              | 19.550               | 0.447      | 18.880       |  |
| Household income between \$100,000 & \$149,999 indicator                              | 0.603              | 21.860               | 0.585      | 21.160       |  |
| Household income more than or equal to \$150,000                                      | 0.650              | 22.030               | 0.635      | 21.310       |  |
| White ethnicity household indicator                                                   | 0.041              | 2.200                | 0.039      | 2.050        |  |
| Household with at least one individual with a college degree indicator                | -0.140             | -8.460               | -0.142     | -8.710       |  |
| Life cycle stage variables                                                            | 0.110              | 0.100                | 0.112      |              |  |
| At least two individuals in the household are related indicator                       | 0.336              | 14.540               | 0.347      | 16.340       |  |
| Single adult household with at least one child indicator                              | -0.222             | -4.940               | -0.224     | -5.070       |  |
| 2+ adults household with youngest child 0-5 years in age indicator                    | -0.209             | -7.290               | -0.204     | -6.140       |  |
| 2+ adults household with youngest child 6-15 years in age indicator                   | -0.108             | -3.870               | -0.106     | -3.530       |  |
| 2+ adults household with youngest child 16-21 years in age indicator                  | -0.300             | -7.270               | -0.301     | -7.070       |  |
| Household's residential location characteristics                                      | -0.500             | -1.210               | -0.501     | -1.010       |  |
| Housing units per square mile (by 100) in census tract of household's home location   | -0.005             | -15.5                | -0.005     | -17.44       |  |
| Workers per square mile (by 100) in the census tract of the household's home location |                    | -5.51                | -0.003     | -5.38        |  |
| Home location in urban area indicator                                                 | -0.46              | -19.99               | -0.463     | -21.85       |  |
| Presence of rail in household's MSA                                                   | -0.40              | -19.99               | -0.403     | -5.23        |  |
|                                                                                       |                    | 25.51                |            | 24.58        |  |
| Home owned by the responding household indicator  Factor Variables                    | 0.481              | 20.01                | 0.475      | 24.00        |  |
|                                                                                       | 0.066              | 0 1                  | 0.062      | 9.05         |  |
| Travel affected due to medical issues  Zama in flation, machit, machabilitae          | -0.066             | -8.1                 | -0.062     | -8.05        |  |
| Zero inflation probit probability                                                     |                    |                      | 2.071      | 11 77        |  |
| Constant                                                                              | _                  |                      | 2.871      | 11.77        |  |
| Household income between \$25,000 & \$49,999 indicator                                | _                  |                      | 0.936      | 2.85         |  |
| Household income between \$50,000 & \$99,999 indicator                                | _                  |                      | 0.991      | 3.07         |  |
| Household income between \$100,000 & \$149,999 indicator                              | _                  |                      | 1.097      | 2.4          |  |
| Household income more than or equal to \$150,000                                      | _                  |                      | 0.557      | 1.76         |  |
| Travel affected due to medical issues                                                 | _                  |                      | -0.114     | -2           |  |
| Travel is a financial burden                                                          | _                  |                      | 0.653      | 5.79         |  |
| Thresholds                                                                            | 2.222              | 100.0                | 2 224      |              |  |
| 1 2                                                                                   | 2.323              | 188.6                | 2.381      | 74.56        |  |
| $\frac{2 3}{2}$                                                                       | 3.905              | 352.44               | 3.967      | 116.98       |  |
| 3 4                                                                                   | 4.827              | 368.03               | 4.89       | 138.62       |  |
| 4 5                                                                                   | 5.517              | 296.88               | 5.581      | 151.03       |  |
| Model fit measures                                                                    |                    |                      |            |              |  |
| Log-likelihood at convergence                                                         | -25577.442         |                      | -25539.623 |              |  |
| Number of estimated parameter                                                         | 24                 |                      | 31         |              |  |
| Number of observations                                                                | 24246              |                      | 24246      |              |  |
| Log-likelihood for constants only model                                               | -35154.751         |                      | -35154.751 |              |  |
| $ ho_c^2$                                                                             | 0.2724             |                      | 0.2735     | 0.2735       |  |
| AIC                                                                                   | 51202.884          |                      | 51141.246  |              |  |
| BIC                                                                                   | 51397.188          |                      | 51392.22   |              |  |
| — corresponding parameter not estimated                                               |                    |                      |            |              |  |

## Discussion

Tab. 3 Estimation results

- Households that consider travel as a financial burden more likely to be in vehicle ownership state.
- Households with at least one member with a medical condition that affects travel less likely to be in vehicle ownership state.
- Presence of non-linear effect of income on probability of being in vehicle ownership state. However, the nature of non-linearity is different from as in the ordered probit probability model part.

#### References

- [1] Cragg, J.G., 1971. Some statistical models for limited dependent variables with application to the demand for durable goods. Econometrica: Journal of the Econometric Society, pp.829-844.
- [2] Harris, M.N. and Zhao, X., 2007. A zero-inflated ordered probit model, with an application to modelling tobacco consumption. Journal of Econometrics, 141(2), pp.1073-1099.
- [3] "Transportation Secure Data Center.", 2019. National Renewable Energy Laboratory. Accessed Jan. 19, 2021: www.nrel.gov/tsdc.

<sup>\*</sup> Percentage of variance explained by the factor

Tab. 2: Results for the factor analysis