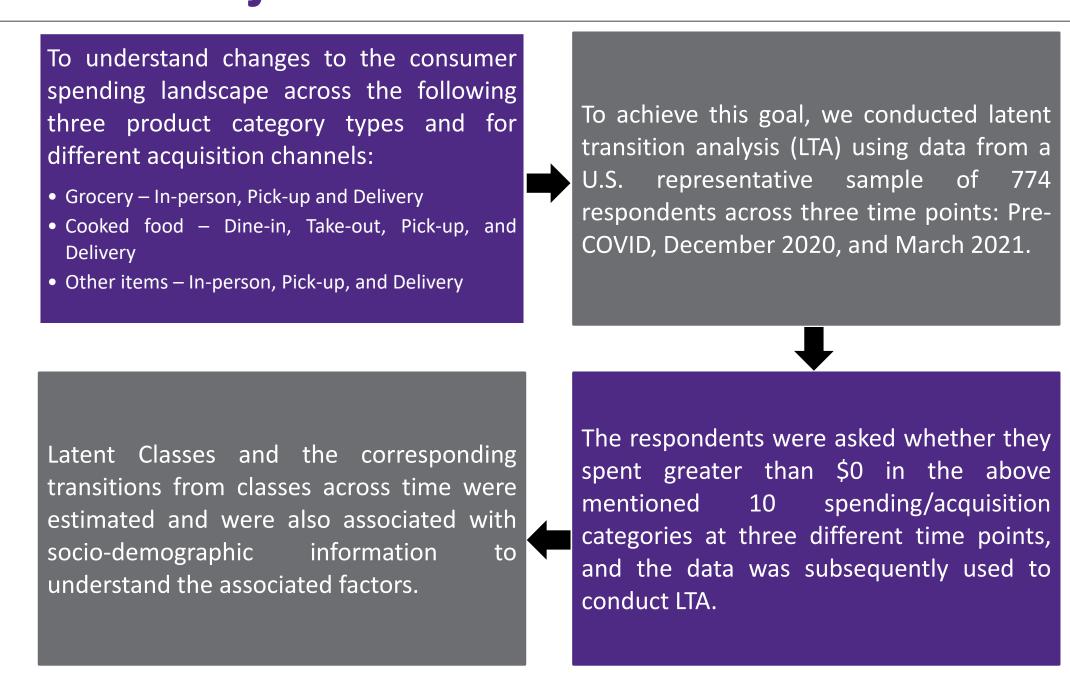
Latent Transition Analysis of Consumer Spending Behavior and Adaptation Across Online and In-Person Channels Through the Pandemic

Divyakant Tahlyan[†], Maher Said[†], Hani Mahmassani[†], Amanda Stathopoulos[†], Joan Walker [‡], Susan Shaheen [‡]


[†] Northwestern University, [‡] University of California, Berkeley

Contact: dtahlyan@u.northwestern.edu, MaherSaid@u.northwestern.edu, a-stathopoulos@northwestern.edu, joanwalker@berkeley.edu, sshaheen@berkeley.edu

Introduction

- A tremendous growth in the adoption of tele-activities like tele-work, e-shopping, tele-health and e-learning is clearly visible as a result of the COVID-19 pandemic.
- The aspect of our lives that saw the most upheaval due to the pandemic is how our daily needs for food are fulfilled.
- The pandemic resulted in the widespread adoption of e-commerce services to meet essential needs. However, the adoption varied across socio-demographic groups and the true nature of changes in the consumer spending landscape is still unknown.

Research Objectives

Data

- We used data from a longitudinal survey conducted amongst a U.S representative sample of respondents with 6 waves approximately 2 weeks apart (Dec 22, 2020 to Mar 08, 2021) to understand the evolution of tele-mobility adoption.
- Main sample of 450 respondents were re-invited in every wave, a 100-respondent replenishment sample added in every wave starting wave 2 to account for attrition.
- Figure 1 shows various dimensions of the data collected in the longitudinal survey.
- Primary data used in this study comes from Wave 1, 3 (pre-COVID information asked in this wave) and 6 and comprised of individuals who participated in at least one of the waves.
- Available Data:
 - Pre-COVID (Wave 3): 419 individuals; Wave 1: 450 individuals; Wave 6: 615 individuals; including data from 284 individuals who participated in all 3 waves.

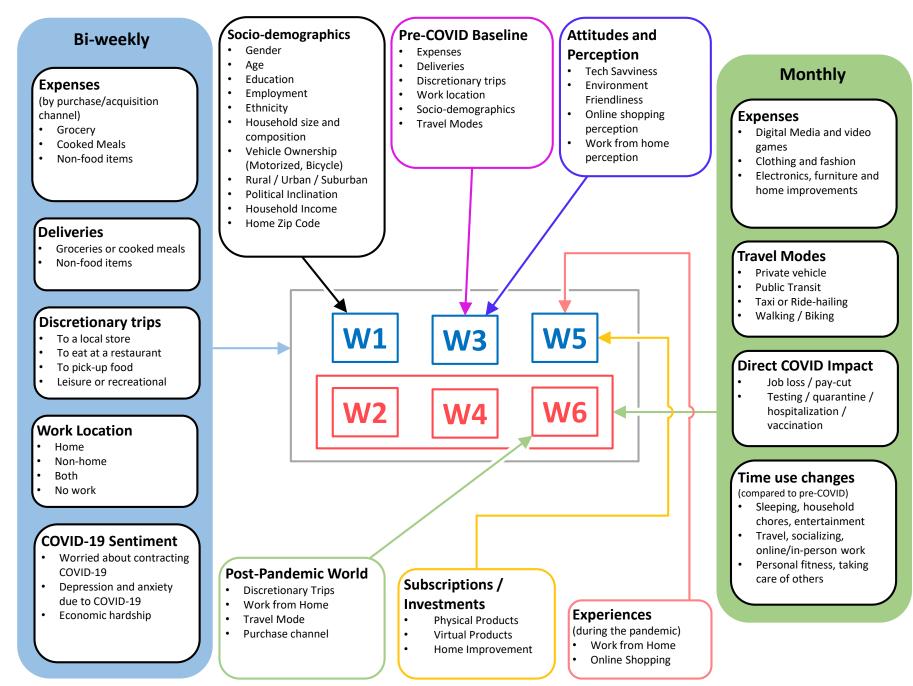


Figure 1: A snapshot of the 6-wave longitudinal survey

Methodology

- Latent Transition Analysis (LTA) is a longitudinal extension to Latent Class Analysis (LCA) and is useful to identify changes in latent classes across time.
- LTA assumes presence of a categorical latent variable at each time point measured using several categorical indicators shown in Figure 2.
- Fundamental expression (with y being the response vector):

$$P(Y = y) = \sum_{s_1=1}^{S} \dots \sum_{s_T=1}^{S} \delta_{s_1} \tau_{s_2|s_1} \dots \tau_{s_T|s_{T-1}} \prod_{t=1}^{T} \prod_{j=1}^{J} \prod_{r_{j,t}=1}^{R_j} \rho_{j,r_j,t|s_t}^{I(y_{j,t}=r_{j,t})}$$

- We use 10 indicators related to whether an individual spent greater than \$0 in a spending category (grocery, prepared food, others) via different acquisition channels (in-person, online, delivery) at various time points to measure latent classes and identify transitions.
- Main assumptions: Measurement Invariance and Local Independence
- Estimation Procedure: Full Information Maximum Likelihood (FIML) to account for missing data in the indicators.
- Bayesian Information Criteria and model interpretation used to determine number of classes.
- To associate socio-demographic information with latent classes and transitions, we use a 3-step bias correction procedure.

Three sets of parameters are estimated in LTA:

- δ_{S_t} = latent class prevalence at time t
- $ho_{j,r_{j,t}|s_t}=$ item response probabilities conditional on latent class at time t
- $\tau_{s_{t+1}|s_t}$ = probability of transition b/w latent classes b/w consecutive time periods

Figure 2: A graphical/mathematical representation of LTA

Results

Class Percentages and Item Response Probabilities

- Our model identify five different latent classes of spending behavior in the data and changes in the percentages of individuals belonging to these classes across time (Table 1).
- Item response probabilities represent the probability of spending greater than \$0 in a category conditional on the latent class.

Class Labels	Class 1	Class 2	Class 3	Class 4	Class 5
		In-person			
		Shoppers		Delivery Dependents	
	Primarily	with	Multi-		Pick-up
	Inperson	Suppressed	channel		Dependents
	Shoppers	Outside	Shoppers	эсрениения	ээрэнаэнгэ
		Food			
		Demand			
Class Percentages				_	I=
PreCOVID	58.89%	20.96%	13.36%	3.37%	3.15%
Wave 1	10.27%	48.20%	13.18%	10.46%	17.89%
Wave 6	10.50%	52.07%	10.08%	12.95%	14.41%
Item Response Probab	oilities				
Grocery - In-person	0.995	0.994	0.974	0.449	0 .657
Grocery - Pick-up	0.105	0.000	0. 760	0.087	0.952
Grocery - Delivery	0.146	0.094	0.646	0.950	0.206
Food - Dine-In	0.837	0.093	0.639	0.070	0.056
Food - Takeout	0.696	0.430	0.932	0.186	0.424
Food - Pick-up	0.297	0.208	0.961	0.098	0.399
Food - Delivery	0.284	0.139	<mark>0</mark> .704	0.506	0.167
Others - In-person	0.928	0.556	0.908	0.181	0.381
Others - Pick-up	0.132	0.060	0.794	0.000	0.253
Others - Delivery	0.698	0.492	0.807	<mark>0</mark> .678	0 .712

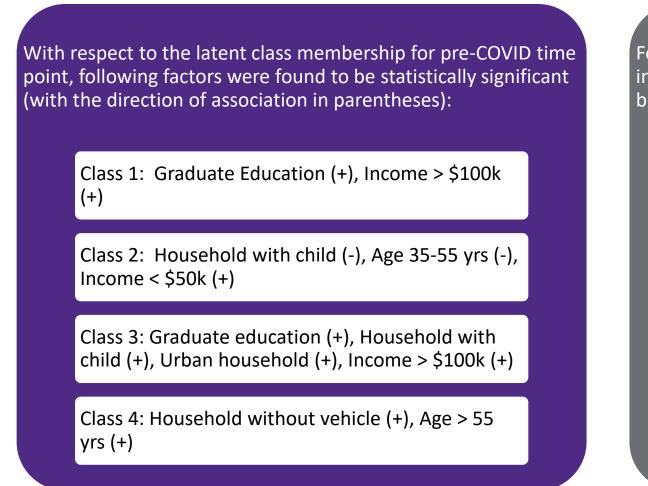
Table 1: Class labels, percentages and item response probabilities

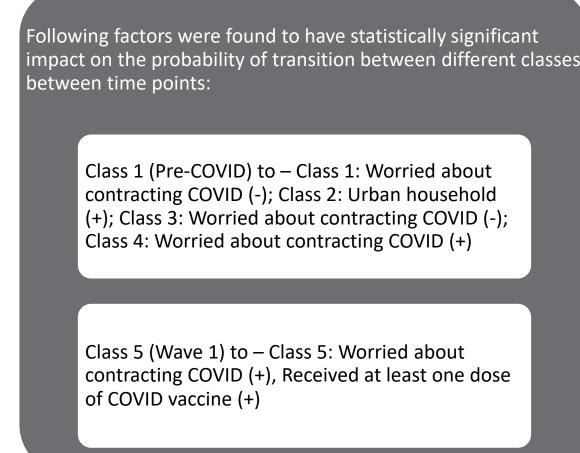
- A significant decrease in size of class 1 (In-person shoppers) between pre-COVID and Wave 1 is evident and a large increase in class 2 (suppression in outside food demand) is also visible.
- An increase in the size of class 4 (delivery dependents) and class 5 (pick-up dependents) suggests a movement towards e-commerce.

Results

Class Transitions

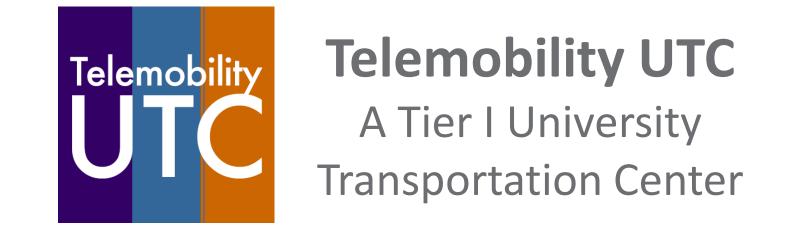
- Figure 3 presents transition between classes across the three time points suggesting a large movement of individuals from class 1 (in-person shoppers) to class 2 (suppressed outside food demand) between pre-COVID and wave 1 time points, likely due to local restrictions or individual cautionary behavior.
- Large movement towards class 4 (delivery dependence) and class 5 (pick-up dependence) as well (b/w pre-COVID and Wave 1), suggesting an increase in delivery and pick-up services usage.
- A large stability in class proportions between Wave 1 and Wave 6 suggests at least a temporary behavioral inertia towards delivery and pick-up services and against eating out.




Figure 3: Sankey visualization of transition across classes across three time points

• Our results suggest that only 15 pathways (out of 125 possible) account for 88.3% individuals in the data with the following paths being the top 5: 1-2-2 (27.56%), 2-2-2 (15.99%), 1-1-1 (8.31%), 1-5-5 (7.22%), 3-3-3 (7.10%)

Membership model


• Results from the membership/transition models identify various socio-demographic factors associated with latent classes and transition between classes.

Conclusions and Discussion

- Results suggest a shift (at least temporary) towards delivery and pick-up services due to COVID-19 and a behavioral stability between two waves during the pandemic.
- Pandemic resulted in strong suppression of food spending, especially for dine-in, however, in-person shopping remains a significant channel for groceries.
- Socio-demographic variables reveal important factors associated with the behavioral shifts like income, vehicle ownership, household location, worry about contracting COVID-19.
- Understanding changes to spending landscape as vaccine rates increase and as we approach normalcy is an avenue for future research.

