Northwestern University Transportation Center

Background

- Problem of **real-time prediction** of traffic states like speed, flow, density or travel time is important from a variety of perspectives including:
- -Traffic operations like signal control, variable message signs or other congestion mitigation strategies.
- -Users' perspective like Navigation systems, trip planning and pricing algorithms for ride hailing services.
- Previous studies have used various sources of data to predict future traffic states including loop detectors, GPS data and video data.
- From methodological perspective, popular methods include: -Statistical Methods like ARIMA, State-Space Models etc.
- -Machine-Learning Methods like Neural Networks, KNN Regression, Support Vector Machines.
- -Traffic Flow Theory based **Traffic Estimation and Prediction Systems** (TrEPS) like Dynasmart-X, DynaMIT-R.
- -Hybrid Methods where two or more methods are combined in some form.

Potential Issues

We identify four potential issues with the existing approaches often used for real-time traffic prediction:

- Restrictive Hypothesis Space true data generating process might lie outside the hypothesized model form like using a linear model form when the data generating process is non-linear.
- **Hyper-parameter tuning** even when a generalized model form like neural networks are used, determining optimal hyper-parameters is tricky.
- No single best model often a single model does not outperform all other models in all situations.
- Learning from mistakes most approaches do not have a feedback loop to ensure learning from the mistakes made in the past.

Current Study

- We identify and address two questions in this study: -Can we combine different models to improve performance? -Can we learn from the prediction mistakes made in the past?
- We use *ensemble learning* to address these issues. Various types ensemble learning techniques include bagging, boosting, random subspace sampling & stacking.

Fig. 1: Types of Ensemble Learning Methods

- We explore the use of *stacking* [1, 2] to combine predictions from four models (KNN regression, Multilayer perceptron, ARIMA, and Dynasmart-X) using predictive performance of the individual models in the recent past.
- We apply the proposed approach from 24-hour traffic speed data from 10 different loop detectors in Kansas City.

A META-LEARNER ENSEMBLE FRAMEWORK FOR REAL-TIME SHORT-TERM TRAFFIC SPEED FORECASTING Divyakant Tahlyan[†], Eunhye Kim[†] and Hani Mahmassani[†]

[†]Transportation Center, Northwestern University

Stacking for Traffic-Speed Forecasting

- level-0 models using a **meta-learner**.
- predictions in the previous steps to train the meta-learner.

Level 0 model

Fig. 2: Conceptual Framework for Stacking

- step t w to t to predict speed values at future time steps.
- For meta-learner, we explore two different algorithms: -Non-negative least square estimation (NNLS) [1]-K-Nearest Neighbors

- from 10 different loop detectors on interstate 435 in Kansas City is used.
- At every time step, data is used to predict traffic speed 15 minutes in future.

KNN Regression •Non-parametric

- regression approach based on finding k-closed data points in the training dataset to test lataset based on a distance measure
- Implemented using tsfknn' package in R, which is written for using
- KNN for time-series type •Data from last 60 minutes is used to make
- predictions Euclidean distance as listance measure and K=4 for all

computations.

Iultilayer Percepti

- •A class of feed-forward neural network with three layers – input, output, and set of hidden
- •Data from last 60 minutes is used to make predictions
- •Implemented using **'nnfor'** package in R, with **2 hidden layers**, 7 and 3 nodes each.

Fig. 3: Level-0 Models

- learner 5 to 60 minutes in the history at 5 minutes interval.
- with least APE value for different methods.

• Stacking consists of two levels — level-0 consists of multiple models making independent predictions and **level-1** consists of combining predictions from

• While in a cross-sectional context stacking involves using cross-validation dataset to train the meta-learner, we use in-flowing data and the corresponding

Level 1 model

• We operate at a **rolling-horizon** basis, i.e. at time step t, use data from time

Case Study

• 24-hour traffic speed data, available as space mean speed at 1-minute interval,

• For meta-learning, a **warm-up period** is assumed, which involved taking average of level-0 predictions so that sufficient data to train meta-learner is collected. • Different lengths of **historical performance data** explored to train meta-

• **Performance Measures**: Absolute Percentage Error; Number of instances

- Tab. 1

100th Annual Meeting of the Transportation Research Board (Paper ID:21-02198)

Northwestern University

Results

• For NNLS, total APE first decreases then increases with increasing length of the performance history. For KNN, total APE mostly increases with increasing length of the performance history.

• In most cases, for at least one value of performance history, total APE values are either better or close to the best performing level-0 model.

• Cumulative APE is relatively higher for NNLS meta-learner around the evening peak but does not deteriorate that much for the KNN meta-learner. • However, NNLS performes better than KNN meta-learner and other level-0 models in terms of number of instances with least APE.

Fig. 4: Total absolute percentage error for different lengths of performance history for detector 1 and 2

Fig. 5: Cumulative absolute percentage error for different models for detector 1

	Meta_NNLS	Meta_KNN	KNN	MLP	ARIMA	TrEPS	Average
etector 1	251	192	173	155	154	222	140
etector 2	180	171	175	165	193	214	189
etector 3	200	187	145	172	211	179	189
tector 4	206	156	196	150	148	229	202
tector 5	199	174	163	141	201	234	175
tector 6	195	164	181	144	175	195	232
tector 7	188	229	165	151	197	160	206
tector 8	184	216	228	139	155	208	157
tector 9	212	274	186	176	197	104	137
tector 10	205	191	168	182	223	91	226
tal	2020	1954	1780	1575	1854	1836	1853
No. of in	nstances with	n least APE	for a p	particu	lar meth	ods for	each dete

• Overall, while the meta-learners used in this study do not always guarantee superior performance than level-0 models, the explored stacking approach seems to work better during the non-peak hours.

• Perhaps, an alternative here would be to not use just immediate performance history but also incorporate performance from previous days.

Acknowledgement

This work is based in part on data from a project funded by the US DOT, FHWA through Leidos, Inc. on the development and testing of an Integrated Modeling for Road Condition Prediction (IMRCP), in partnership with Synesis, Inc.

References

[1] Breiman, L., 1996. Stacked regressions. Machine learning, 24(1), pp.49-64. [2] Wolpert, D.H., 1992. Stacked generalization. Neural networks, 5(2), pp.241-259.